35 research outputs found

    Development of spatial coarse-to-fine processing in the visual pathway

    Get PDF
    The sequential analysis of information in a coarse-to-fine manner is a fundamental mode of processing in the visual pathway. Spatial frequency (SF) tuning, arguably the most fundamental feature of spatial vision, provides particular intuition within the coarse-to-fine framework: low spatial frequencies convey global information about an image (e.g., general orientation), while high spatial frequencies carry more detailed information (e.g., edges). In this paper, we study the development of cortical spatial frequency tuning. As feedforward input from the lateral geniculate nucleus (LGN) has been shown to have significant influence on cortical coarse-to-fine processing, we present a firing-rate based thalamocortical model which includes both feedforward and feedback components. We analyze the relationship between various model parameters (including cortical feedback strength) and responses. We confirm the importance of the antagonistic relationship between the center and surround responses in thalamic relay cell receptive fields (RFs), and further characterize how specific structural LGN RF parameters affect cortical coarse-to-fine processing. Our results also indicate that the effect of cortical feedback on spatial frequency tuning is age-dependent: in particular, cortical feedback more strongly affects coarse-to-fine processing in kittens than in adults. We use our results to propose an experimentally testable hypothesis for the function of the extensive feedback in the corticothalamic circuit.Comment: 20 pages, 7 figures; substantial restructuring from previous versio

    Universal features in panarthropod inter-limb coordination during forward walking

    Full text link
    Terrestrial animals must often negotiate heterogeneous, varying environments. Accordingly, their locomotive strategies must adapt to a wide range of terrain, as well as to a range of speeds in order to accomplish different behavioral goals. Studies in \textit{Drosophila} have found that inter-leg coordination patterns (ICPs) vary smoothly with walking speed, rather than switching between distinct gaits as in vertebrates (e.g., horses transitioning between trotting and galloping). Such a continuum of stepping patterns implies that separate neural controllers are not necessary for each observed ICP. Furthermore, the spectrum of \textit{Drosophila} stepping patterns includes all canonical coordination patterns observed during forward walking in insects. This raises the exciting possibility that the controller in \textit{Drosophila} is common to all insects, and perhaps more generally to panarthropod walkers. Here, we survey and collate data on leg kinematics and inter-leg coordination relationships during forward walking in a range of arthropod species, as well as include data from a recent behavioral investigation into the tardigrade \textit{Hypsibius exemplaris}. Using this comparative dataset, we point to several functional and morphological features that are shared amongst panarthropods. The goal of the framework presented in this review is to emphasize the importance of comparative functional and morphological analyses in understanding the origins and diversification of walking in Panarthropoda

    The Limiting Speed of the Bacterial Flagellar Motor

    Full text link
    Recent experiments on the bacterial flagellar motor have shown that the structure of this nanomachine, which drives locomotion in a wide range of bacterial species, is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we propose that, contrary to previous assumptions, the maximum speed of the motor is not universal, but rather increases as additional torque-generators are recruited. This result arises from our assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.Comment: 8 pages, 3 figures (main text); 7 pages, 3 figures (supplementary

    Mechanics of torque generation in the bacterial flagellar motor

    Full text link
    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well-established that the passage of ions down a transmembrane gradient through the stator complex provides the energy needed for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, while steric forces comprise the actual 'power stroke'. Specifically, we predict that ion-induced conformational changes about a proline 'hinge' residue in an α\alpha-helix of the stator are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. Furthermore, we propose several experiments to elucidate the torque-speed relationship in motors where the number of stators may not be constant. The proposed model provides a mechanical explanation for several fundamental features of the flagellar motor, including: torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the puzzle of swarming experiments

    Analysis of unstable behavior in a mathematical model for erythropoiesis

    Get PDF
    Agraïments: This research has been motivated and partially supported by NSF via the Institute for Pure and Applied Mathematics (UCLA) program "Research in Industrial Projects for Students" 2008 and AMGEN Cooporation in California. The authors thank students Raphiel Murden and David Pinney at RIPS 2008 as well as IPAM for their support. Special thanks to David Balaban and Gilles Gnacadja from AMGEN Corporation for their advice and helpful discussions

    ATP synthase: evolution, energetics, and membrane interactions

    Full text link
    The synthesis of ATP, life's 'universal energy currency', is the most prevalent chemical reaction in biological systems, and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life, and is believed to predate the divergence of these lineages over 1.5 billion years ago. These enzymes have therefore facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. In this review, we present an overview of the current knowledge of the structure and function of F-type ATPases, highlighting several adaptations that have been characterized across taxa. We emphasize the importance of studying these features within the context of the enzyme's particular lipid environment: Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins -- including ATP synthase -- requires such an integrative approach.Comment: Review article; 29 pages, 6 figures/1 tabl
    corecore